

# III Semester B.A./B.Sc. Examination, Nov./Dec. 2017 (NS) (2012-13 and Onwards) (Repeaters – Prior to 2015-16) MATHEMATICS – III

Time: 3 Hours

Max. Marks: 10

(15×2=3

Instruction: Answer all questions.

- I. Answer any fifteen questions:
  - 1) Define normal subgroup.
  - 2) Show that every quotient for of an abelian group is abelian.
  - 3) If  $f: G \to G'$  be a homomorphism from the group  $(G, \bullet)$  into a group (G', \*) then prove that  $f(a^{-1}) = [f(a)]^{-1} \ \forall \ a \in G$ .

4) If 
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$
 and  $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$  find  $f^{-1} \circ g$ .

- 5) What is linear programming problem?
- 6) Solve 3x + 2y > 6 graphically,  $x \ge 0$ ,  $y \ge 0$ .
- 7) Using North West corner method determine an initial basic solution of the following transportation problem.

| following transp | 1. | 2   | 3   | Available |
|------------------|----|-----|-----|-----------|
| Δ                | 15 | 26  | 13  | 340       |
| В                | 3  | 7   | 8   | 100       |
| C                | 9  | 4   | 3   | 110       |
| Requirement      | 80 | 150 | 320 |           |

- 8) Define convergent and divergent sequences.
- 9) Test the convergence of the sequence  $\sqrt{n+1} \sqrt{n}$ .
- 10) Show that  $\left\{\frac{n}{n+1}\right\}$  is a Cauchy sequence.
- 11) Prove that the sequence  $\{x_n\}$  whose  $n^{th}$  term is  $\frac{n+3}{n+4}$  is monotonic increasing

- that  $\lim_{n\to\infty} 1 = 0$ 



- 13) Define Geometric series.
- 14) Test the convergence of the series  $\Sigma \sin\left(\frac{1}{n}\right)$ .
- 15) Test the convergence of the series  $\sum \frac{n^2}{n!}$ .
- 16) Sum to infinity of the series  $1 + \frac{x}{3} + \frac{x^2}{5} + \frac{x^3}{7} + \dots$
- 17) Write the Geometrical interpretation of Rolle's theorem.
- 18) Prove that the function  $f(x) = \begin{cases} \frac{|x|}{x} & \text{for } x > 0 \\ 1 & \text{for } x = 0 \end{cases}$  is discontinuous at x = 0.
- 19) Expand cosx by Maclaurin's expansion.
- 20) Evaluate  $\lim_{x\to 0} \left( \frac{x-\sin x}{x^3} \right)$ .

#### II. Answer any two questions:

(2×5=10)

- 1) Prove that a subgroup H of a group G is normal if and only if  $gHg^{-1} = H \ \forall g \in G$ .
- 2) Prove that the centre Z of a group G is a normal subgroup of G.
- 3) If  $f: G \to G'$  is a homomorphism from the group G into the group G' with Kernel K, then prove that f is one-one if and only if  $K = \{e\}$ .
- 4) State and prove Cayley's theorem.

### III. Answer any three questions:

(3×5=15)

- 1) Find all the basic solutions of the system of equation x + 2y + z = 4 and 2x + y + 5z = 5.
- 2) Solve the following L.P.P. graphically Minimize, z = -x + 2y

Subject to constraints 
$$-x + 3y \le 10$$

$$x + y \le 6$$

$$x-y \leq 2$$

and v < 0 v <

 $(2 \times 5 = 10)$ 



3) Solve the following L.P.P. by Simplex method

Maximize, 
$$z = 4x + 3y$$

Subject to constraints  $3x + y \le 15$  $3x + 4y \le 24$ 

and 
$$x, y, \ge 0$$
.

 Obtain an initial basic solution to the following transportation problem using Vogel's method.

| Voger 5 Tric   | $D_1$ | D <sub>2</sub> | $D_3$ | D <sub>4</sub> | Supply      |
|----------------|-------|----------------|-------|----------------|-------------|
| S <sub>1</sub> | 19    | 30             | 8     | 10             | 7           |
| S <sub>2</sub> | 70    | 30             | 40    | 60             | 9           |
| S <sub>3</sub> | 40    | 8              | 70    | 20             | <b>V</b> 18 |
| Demand         | 5     | 8              | 7     | 14             |             |

# IV. Answer any two questions:

- 1) Prove that a monotonic increasing sequence bounded above is convergent.
- 2) Discuss the nature of the sequence  $\{n^{\frac{1}{n}}\}$ .
- 3) Show that the sequence  $\{x_n\}$  where  $x_1 = 1$  and  $x_n = \sqrt{2 + x_{n-1}} \quad \forall \, n > 1$ , is convergent and converges to 2.

# V. Answer any four questions:

- 1) Prove that P-series  $\sum \frac{1}{n^p}$  is
  - i) Convergent if P > 1 and
- ii) Divergent if  $P \le 1$ .
- 2) State and prove Raabe's test.
- 3) Test the convergence of the series  $\frac{1}{12} + \frac{1}{23} + \frac{1}{34} + \dots$
- 4) Discuss the convergence of the series  $1 + 2^2 \cdot x + 3^2 \cdot x^2 + 4^2 \cdot x^3 + \dots$
- 5) Sum to infinity the series  $\sum_{n=1}^{\infty} \left( \frac{n^2 + n + 1}{n!} \right) x^n$ .
  - $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$

#### VI. Answer any three questions:

(3×5=15

1) Examine the differentiability of f(x) defined by

$$f(x) = \begin{cases} x^2 - 1 & \text{for } x \ge 1 \\ 1 - x & \text{for } x < 1 \end{cases} \text{ at } x = 1.$$

- 2) State and prove Rolle's theorem.
- 3) Verify Lagrange's mean value theorem for f(x) = (x-1)(x-2)(x-3) in [0,4].
- 4) Expand the function  $log_e(1 + x)$  upto the term containing  $x^4$  by Maclaurin's expansion.
- 5) Evaluate  $\lim_{x\to 0} \left(\frac{1}{x^2} \cot^2 x\right)$